On the prime density of Lucas sequences

نویسنده

  • Pieter Moree
چکیده

The density of primes dividing at least one term of the Lucas sequence defined by L0(P) = 2, L1(P)= P and Ln(P) = PLn-1(P) + Ln-2(P) for n ~ 2, with P an arbitrary integer, is determined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Properties of Balancing and Lucas-Balancing $p$-Numbers

The main goal of this paper is to develop a new generalization of balancing and Lucas-balancing sequences namely balancing and Lucas-balancing $p$-numbers and derive several identities related to them. Some combinatorial forms of these numbers are also presented.

متن کامل

On Primes and Terms of Prime or 2 Index in the Lehmer Sequences

It is known that with a very small number of exceptions, for a term of a Lehmer sequence {Un( √ R,Q)} to be prime its index must be prime. For example, F4 = U4(1,−1) = 3 is prime. Also, Un(1, 2) is prime for n = 6, 8, 9, 10, 15, 25, 25, 65, while Vn(1, 2) is prime for n = 9, 12, and 20. This criterion extends to the companion Lehmer sequences {Vn( √ R,Q)}, with the exception that primality may ...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

Primitive Prime Factors in Second-order Linear Recurrence Sequences

For a class of Lucas sequences {xn}, we show that if n is a positive integer then xn has a primitive prime factor which divides xn to an odd power, except perhaps when n = 1, 2, 3 or 6. This has several desirable consequences.

متن کامل

Congruences Involving Binomial Coefficients and Lucas Sequences

In this paper we obtain some congruences involving central binomial coefficients and Lucas sequences. For example, we show that if p > 5 is a prime then p−1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996